

Current Status of Volatile Organic Compound Emissions from Pesticides

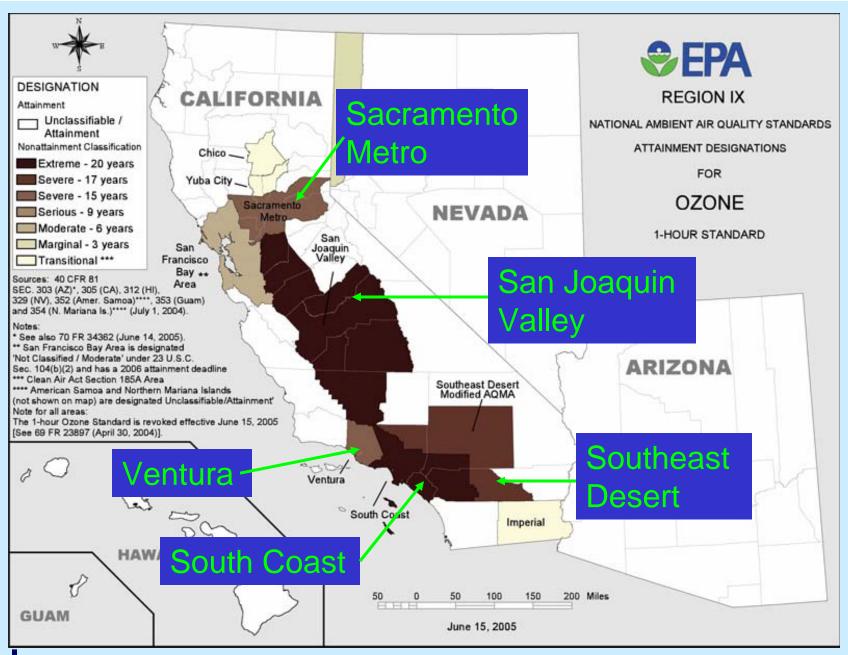
Randy Segawa

May 2007

Overview

- Background
- Estimates of Pesticide VOC Emissions
- Regulatory Issues
- Changes to Method for Estimating Pesticide VOC Emissions
- Fumigant Regulations

Background


- Volatile organic compounds (VOCs) + nitrogen oxides (NOx) + sunlight ==> ozone, a major air pollutant
- Many pesticide active and inert ingredients are VOCs
- Clean Air Act:

ARB and APCD

develop State Implementation Plans (SIPs) to reduce VOCs and NOx

- SIP requires state to:
 - track VOC and NOx emissions
 - reduce them by specified amounts in nonattainment areas

1994 SIP DPR Requirements

 Develop & maintain pesticide VOC inventory, track emissions

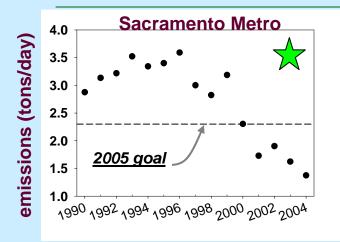
 Implement regulations to achieve 20% reduction in five nonattainment areas (per court order)

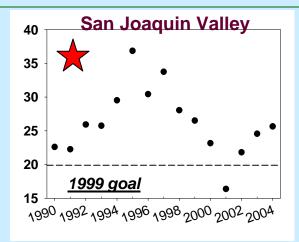
Method for Estimating Pesticide VOCs

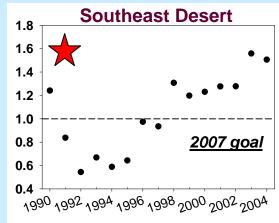
- DPR's inventory of VOC emissions:
 - agricultural and commercial structural applications of pesticide products
- VOC emission:

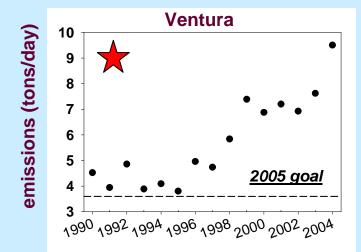
emission = amount of product χ VOC fraction in product

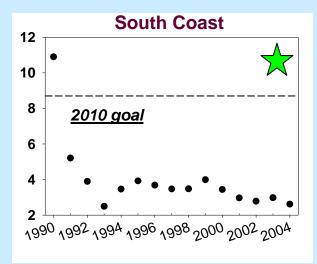
- Amount of product from PUR
- VOC fraction (emission potential, EP) determined by:
 - Lab test (thermogravimetric analysis, TGA)
 - Water/inorganic subtraction
 - Confidential statement of formula
 - Default value




Emission Inventory Calculations


- Emission inventory:
 - ag and commercial structural applications using PUR and EP data
- Emissions for each year beginning with base year (1990/1991)
- Inventory focuses on:
 - May Oct (peak ozone period) each year
 - 5 nonattainment areas




1990 - 2004 May - October Pesticide VOC Emissions

Major Types of Pesticide VOCs (May-Oct 2004)

Nonattainment Area	Pesticide VOCs from Fumigants (%)	Pesticide VOCs from Emulsifiable Concentrates (%)
San Joaquin Valley	52	34
Southeast Desert	84	10
Ventura	93	3

Key Regulatory Issues

- DPR no longer in compliance with SIP
 - San Joaquin Valley
- Recently revised ozone standard
 - EPA revised ozone standard in 2004
 - New SIP required
 - requires VOC reductions beyond those in 1994
 SIP
- Court order: DPR to reduce pesticide VOCs 20% of 1991 levels

Air Quality Initiative

- DPR's "Air Quality Initiative" addresses regulatory requirements and other air issues
 - Adopt innovative technologies
 - Establish pest management strategic partnerships
 - Reduce emulsifiable concentrate emissions
 - Reduce fumigant emissions

Adopt Innovative Technologies

- Long-term measures
- Precision agriculture
 - Equipment designed to improve application efficiency and reduce waste (e.g. special nozzles)
 - Variable rate technologies that change the rate of application according to variations in field conditions

Establish Pest Management Strategic Partnerships

- Long-term measure
- DPR is considering
 - Strategic partnerships
 - Pest-resistant and tolerant crops
 - Alternatives evaluation as part of restricted material permit process
 - Promotion of changes in commercially driven pesticide use (lenders, insurers, etc.)

Reduce Emulsifiable Concentrate Emissions

- DPR initiated reevaluation to request reformulation of approx 780 liquid products
- Establishes a 20% emission potential goal
- DPR considering VOC limit for new products

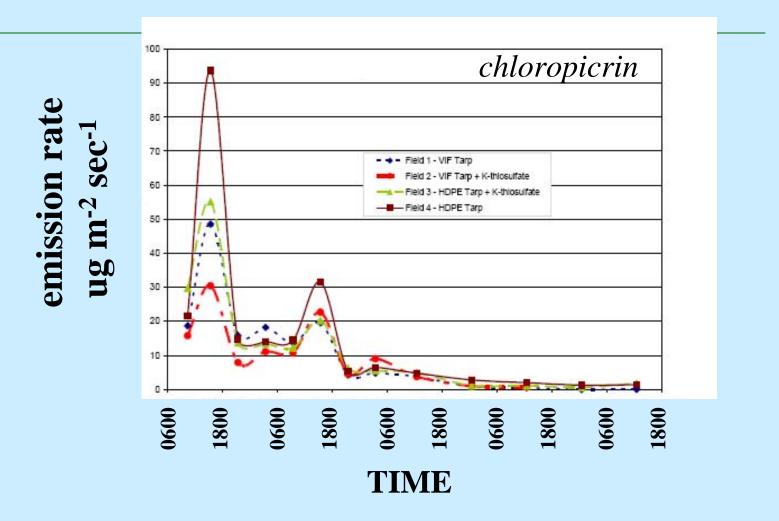
Reduce Fumigant Emissions

- Court order: regulations to achieve VOC reductions effective by 1/1/08
- Proposed regulations include:
 - Licensing requirements
 - Specific field fumigation methods
 - Records and reporting
 - Field fumigation emission limits
- Revisions to emission inventory methodology needed to account for field conditions

Calculation Revisions

- VOC Inventory: numerous changes since 2002
 - improved accuracy
 - generic default emission potentials (EP)
 - special product chemistry-based EPs
 - additional products/application sites
 - outlier selection criteria
 - re-evaluation: EP data call-in ~700 products
- Objective: fumigant emissions under field conditions
- Revisions coordinated with proposed fumigant regs

Proposed Calculation of Field Adjusted Emissions


Old: Potential VOC emission

Emission = amount of product x EP

assumed 100% for fumigants

Emission vary under different application methods

"Methods to Reduce Fumigant Volatilization Losses from Agricultural Fields" Husein Ajwa et al., *Proceedings 2007 California Plant and Soil Conference*

Proposed Calculation of Field Adjusted Emissions

Old: Potential VOC emission
 Emission = amount of product x EP

 New: Field VOC emission for a specific fumigant, nonattainment area, and year is:

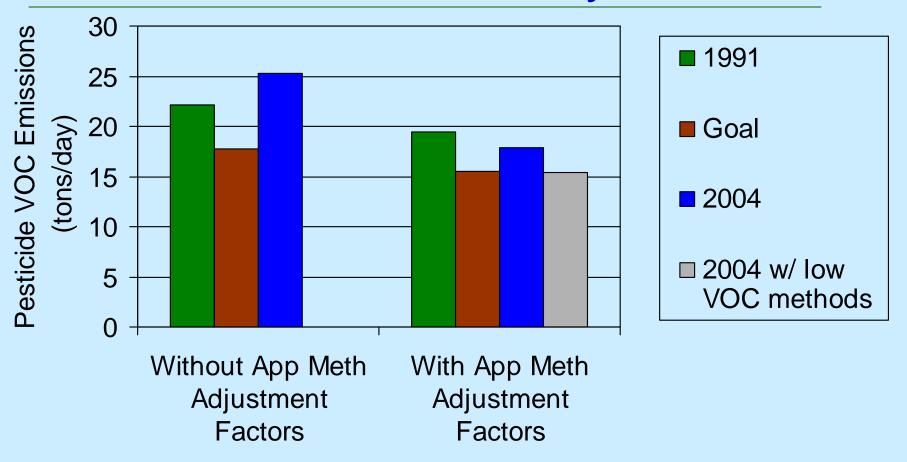
Sum of (amount of AI x AMAF x MUF)

AMAF = Application Method Adjustment Factor

= fraction of fumigant actually emitted to air

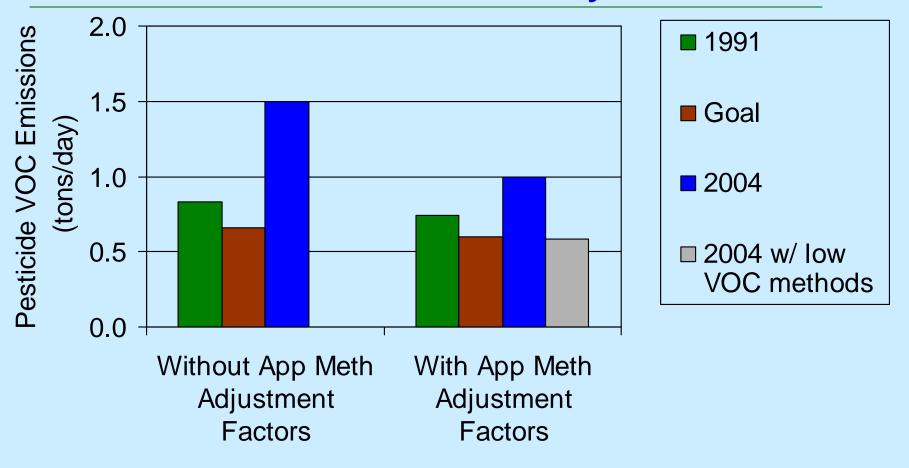
MUF = Method Use Fraction

= fraction of total applications

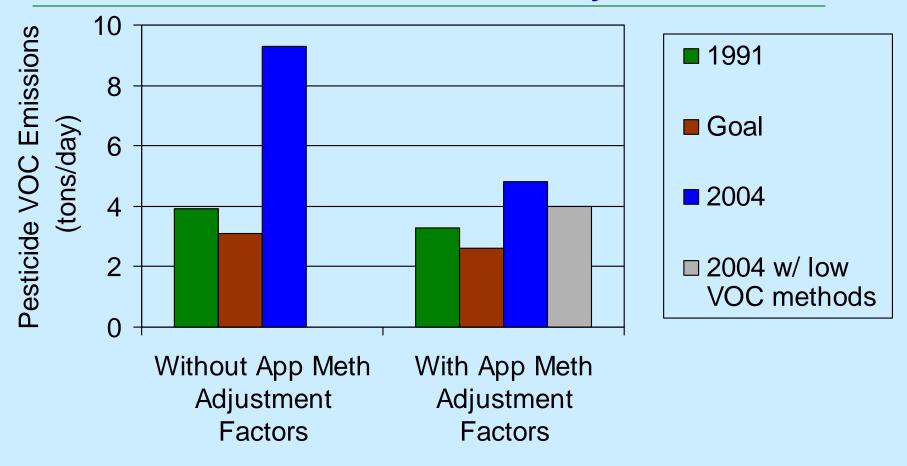

Example: Metam Adjusted Emissions, San Joaquin Valley, May-Oct 2004

Metam Application Method	MITC Applied* (tpd)	AMAF (%)	MUF (%)	VOC Emissions (tpd)
Shallow injection, no tarp	6.3	77	21	1.02
Rototill or soil capping	6.3	14	20	0.18
Standard sprinkler	6.3	77	35	1.70
Drip	6.3	9	24	0.14
TOTAL	6.3			3.04

^{*}MITC is the pesticidal breakdown product of metam



San Joaquin Valley Pesticide VOC Inventory



Southeast Desert Pesticide VOC Inventory

Ventura Pesticide VOC Inventory

Pesticide VOC Research and Research Needs

- Emission inventory
- Emission reduction
 - Fumigants
 - Emulsifiable concentrates
 - Pest management
 - Innovative technologies
- Economics

